
Design and Development of a Java Parallel I/O

Library

By

Muhammad Sohaib Ayub 2008-NUST-BIT-125

Muhammad Adnan 2008-NUST-BIT-140

Muhammad Yasir Shafi 2008-NUST-BEE-388

A project report submitted in partial fulfillment

of the requirement for the degree of

Bachelors of Information Technology

Department of Computing

School of Electrical Engineering and Computer Science

National University of Sciences & Technology

Islamabad, Pakistan

2012

Design and Development of a Java Parallel I/O Library Page ii

CERTIFICATE

It is certified that the contents and form of thesis entitled “Design and Development

of a Java Parallel I/O Library” submitted by Muhammad Sohaib Ayub (2008-

NUST-BIT-125), Muhammad Adnan (2008-NUST-BIT-140) and Muhammad

Yasir Shafi (2008-NUST-BE-388) have been found satisfactory for the requirement

of the degree.

Advisor: ______________________________

(Syed. Akbar Mehdi)

Co-Advisor: ______________________________

(Dr. Anjum Naveed)

Design and Development of a Java Parallel I/O Library Page iii

DEDICATION

To Allah the Almighty

&

To my Parents and Faculty

Design and Development of a Java Parallel I/O Library Page iv

ACKNOWLEDGEMENTS

We are deeply thankful to Dr.Aamir Shafi for his throughout the project. His

guidance, support and motivation enabled us in achieving the objectives of the project.

We are extremely thankful to Ammar Ahmad Awan for guiding us in crucial stages of

the project and sparing his valuable time for us. He was always helpful for us

whenever we stuck in some complex problem.

We are deeply thankful to our Advisor, Syed Akbar Mehdi and Co-Advisor Dr.

Anjum Naveed for helping us to improve our project throughout the course in

accomplishing my final project. Their valuable suggestions were extremely helpful for

us to achieve real targets for this project.

Design and Development of a Java Parallel I/O Library Page v

TABLE OF CONTENTS

1 INTRODUCTION __ 12

1.1 HIGH PERFORMANCE COMPUTING ___ 12

1.2 JAVA BASED HPC __ 13

1.3 I/O REQUIREMENTS IN HIGH PERFORMANCE COMPUTING _________________________________ 14

1.3.1 Shared Memory Systems __ 16

1.3.2 OpenMP ___ 17

1.3.3 Parallel I/O Approach ___ 18

1.4 I/O REQUIREMENTS IN JAVA ___ 18

1.5 PROBLEM STATEMENT ___ 20

2 LITERATURE REVIEW __ 21

2.1 MPI-IO ___ 21

2.2 PARALLEL MPI IO IN C, C++, FORTRAN ___ 21

2.2.1 ROMIO (Implementation of MPI-IO) ___ 22
2.2.1.1 Features in ROMIO: __ 22

2.2.2 Parallel HDF5 ___ 23
2.2.2.1 Features Supported in Parallel HDF5 __ 23

2.2.3 Parallel IO __ 23

2.2.4 Parallel NetCDF :___ 24

2.3 JAVA BASED IO __ 25

2.3.1 Evaluation of java’s IO Capabilities __ 25

2.4 EXISTING JAVA PARALLEL I/O PROJECTS __ 29

2.4.1 Parallel Java library __ 29

2.4.2 Parallel file system ___ 29

2.5 MPJ EXPRESS ___ 30

3 DESIGN AND IMPLEMENTATION __ 32

3.1 JAVA NIO BASED PARALLEL I/O ___ 33

3.1.1 Memory Mapped File ___ 33

3.1.2 Java NIO facilities __ 33

3.2 EVALUATION OF NIO APPROACHES FOR PARALLEL JAVA I/O ________________________________ 34

3.2.1 BulkRandomAccessFiles ___ 34

3.2.2 RandomAccessFiles __ 34

3.2.3 FileChannel with viewBuffer ___ 34

3.2.4 FileChannel in MappedMode ___ 34

3.3 PROPOSED APPROACHES FOR PERFORMING PARALLEL JAVA I/O _____________________________ 35

3.4 PROPOSED MPI-IO ROUTINES FOR DEVELOPING PARALLEL I/O JAVA API _______________________ 35

3.5 IMPLEMENTATION OF PROPOSED ROUTINES ___ 37

3.5.1 File Manipulation __ 37
3.5.1.1 Opening a File __ 38
3.5.1.2 Closing a File ___ 38

Design and Development of a Java Parallel I/O Library Page vi

3.5.1.3 File Info ___ 38
3.5.2 File Views __ 39

3.5.3 Consistency and Semantics __ 39

3.5.4 Data Access __ 40
3.5.4.1 Data Access Routines __ 40
3.5.4.2 Data Access with Individual File Pointers ___ 40

3.6 TEST CASES ___ 43

3.6.1 Coll_test.java ___ 43

3.6.2 Async_test.java ___ 43

3.6.3 Atomicity_test.java __ 43

3.6.4 Misc_test.java __ 43

3.6.5 Perf.java ___ 43

4 EVALUATION AND DISCUSSION ___ 45

4.1 TEST ENVIRONMENT___ 45

4.1.1 Barq Cluster (barq.seecs.edu.pk) __ 45

4.1.2 Afrit Cluster, RCMS (10.128.0.1) __ 46

4.2 RESULTS OF PARALLEL I/O APPROACHES ___ 47

4.2.1 Results of Parallel access to shared file residing on Local Disk _____________________ 47

4.2.2 Results of Parallel access to shared file residing on NFS __________________________ 48

4.2.3 Results of parallel access to shared file residing on NFS storage of the Distributed Memory

Machine __ 48

4.3 RESULTS OF PROTOTYPE IMPLEMENTATION ___ 49

5 CONCLUSION AND FUTURE RECOMENDATION ______________________________________ 51

6 REFERENCES ___ 54

7 APPENDIX-A ___ 58

7.1 METHODS IMPLEMENTATION IN JAVA BASED PARALLEL I/OAPI ______________________________ 58

7.1.1 Data access routines ___ 58

7.2 MPJ-IO: API SPECIFICATION VERSION 0.1(MPI-2.2 STANDARD) ___________________________ 58

7.2.1 Introduction __ 58
7.2.1.1 Changes from MPI-1.1 to MPI-2.2 (relevant to MPI-IO interface) ______________________ 59
7.2.1.2 Definitions ___ 59

7.2.2 File Manipulation __ 59
7.2.2.1 Opening a File __ 60
7.2.2.2 Closing a File ___ 60
7.2.2.3 Deleting a File __ 60
7.2.2.4 Resizing a File __ 60
7.2.2.5 Preallocating Space for a File __ 60
7.2.2.6 Querying the Size of File __ 61
7.2.2.7 Querying File Parameters ___ 61
7.2.2.8 File Info ___ 61

7.2.3 File Views __ 61

7.2.4 Data Access __ 62

Design and Development of a Java Parallel I/O Library Page vii

7.2.4.1 Data Access Routines __ 62
7.2.4.2 Data Access with Explicit Offsets ___ 62
7.2.4.3 Data Access with Individual File Pointers ___ 64
7.2.4.4 Data Access with Shared File Pointers ___ 66
7.2.4.5 Split Collective Data Access Routines __ 68

7.2.5 File Interoperability __ 71
7.2.5.1 Datatypes for File Interoperability __ 71
7.2.5.2 External Data Representation: “external32” ______________________________________ 71
7.2.5.3 User-Defined Data Representations ___ 71
7.2.5.4 Matching Data Representations __ 71

7.2.6 Consistency and Semantics __ 71
7.2.6.1 File Consistency ___ 71
7.2.6.2 Random Access vs. Sequential Files ___ 72
7.2.6.3 Progress ___ 72
7.2.6.4 Collective File Operations ___ 72
7.2.6.5 Type Matching __ 72
7.2.6.6 Miscellaneous Clarifications ___ 72
7.2.6.7 MPI_Offset Type __ 72
7.2.6.8 Logical vs. Physical Layout __ 72
7.2.6.9 File Size ___ 72
7.2.6.10 Examples __ 72

7.2.7 I/O Error Handling ___ 75

7.2.8 I/O Error Classes ___ 75

7.2.9 Examples ___ 75
7.2.9.1 Double Buffering with Split Collective I/O __ 75
7.2.9.2 Subarray Filetype Constructor ___ 76

Design and Development of a Java Parallel I/O Library Page viii

LIST OF FIGURES

FIGURE 1-1DISTRIBUTED MEMORY ARCHITECTURE ___ 16

FIGURE 1-2SHARED MEMORY ARCHITECTURE __ 16

FIGURE 1-3MASTER THREAD FORKS A NUMBER OF THREADS THAT EXECUTE CODE IN PARALLEL __________________ 17

FIGURE 1-4PARALLEL I/O APPROACH __ 18

FIGURE 1-5JAVA I/O CLASS HIERARCHY __ 19

FIGURE 2-1LAYERED ARCHITECTURE OF MPJ EXPRESS ___ 31

FIGURE 3-1ARCHITECTURE DIAGRAM __ 32

FIGURE 3-2 HIERARCHY OF IMPLEMENTATION __ 44

FIGURE 4-1BARQ CLUSTER NODES __ 45

FIGURE 4-2NODE STRUCTURE OF RCMS CLUSTER ___ 46

FIGURE 4-3PERFORMANCE OF TESTS USING JAVA THREADS FOR PARALLEL ACCESS TO A SHARED FILE ON LOCAL DISK ___ 47

FIGURE 4-4PERFORMANCE OF TESTS USING JAVA THREADS FOR PARALLEL ACCESS TO A SHARED FILE RESIDING ON NFS

STORAGE ATTACHED TO THE SHARED MEMORY MACHINE ______________________________________ 48

FIGURE 4-5PERFORMANCE OF TESTS USING MPJ EXPRESS PROCESSES FOR PARALLEL ACCESS TO SHARED FILE RESIDING ON

NFS STORAGE OF THE DISTRIBUTED MEMORY MACHINE _______________________________________ 49

FIGURE 4-6 READ AND WRITE TEST CASE RESULTS __ 50

Design and Development of a Java Parallel I/O Library Page ix

LIST OF TABLES

TABLE 3-1 DATA ACCESS ROUTINES ___ 37

TABLE 4-1SPECIFICATION OF BARQ CLUSTER ___ 45

TABLE 4-2SPECIFICATION OF RCMS CLUSTER __ 46

TABLE 7-1DATA ACCESS ROUTINES ___ 58

Design and Development of a Java Parallel I/O Library Page x

List of Abbreviations & Important Terms

MPI – Message Passing Interface

MPJ - Java based implementation of MPI

HPC- High Performance Computing

ROMIO- Implementation of MPI

MPICH-2 Implementation of the message passing interface (MPI-2.2)

JGF- Java Grande Forum

OpenMP-Thread based API which provides parallelization mechanisms on

shared-memory multiprocessors

Parallel HDF5- An API to support parallel file access for HDF5 files in a message

passing environment.

JNI- Java Native Interface

Java NIO- Java New IO, an API which provides non-blocking I/O routines

Design and Development of a Java Parallel I/O Library Page xi

ABSTRACT

Parallel I/O refers to the ability of scientific programs to concurrently read/write

from/to a single file from multiple processes executing on distributed memory

platforms like compute clusters. In the HPC world, I/O becomes a significant

bottleneck for many real-world scientific applications. In the last two decades, there

has been significant research in improving the performance of I/O operations in

scientific computing for traditional languages including C, C++, and Fortran. As a

result of this, several mature and high-performance libraries including ROMIO

(implementation of MPI-IO), parallel HDF5, Parallel I/O (PIO), and parallel netCDF

are available today that provide efficient I/O for scientific applications. However, there

is very little research done to evaluate and improve I/O performance of Java-based

HPC applications. The main hindrance in the development of efficient parallel I/O

Java libraries is the lack of a standard API (something equivalent to MPI-IO). Some

adhoc solutions have been developed and used in proprietary applications, but there is

no general-purpose solution that can be used by performance hungry applications.

As part of this project, we plan to develop a Java-based parallel I/O API inspired by

the MPI-IO bindings (MPI 2.0 standard document) for C, C++, and Fortran. Once the

Java equivalent API of MPI-IO has been developed, we will develop a reference

implementation on top of existing Java messaging libraries. Later, we will evaluate

and compare performance of our reference Java Parallel I/O library with C/C++

counterparts using benchmarks and real-world applications.

Design and Development of a Java Parallel I/O Library Page 12

Chapter 1

1 INTRODUCTION

 Java is now considered as a mainstream programming language because of

some very attractive features like built-in support for multi-threading, portability,

automatic garbage collection, thread-safety, compile time and run time security.

Consequently, Java has also been adopted by the High Performance Computing

(HPC) community to program parallel applications for distributed and shared

memory platforms. In modern HPC applications, disk I/O remains a significant

bottleneck. Unfortunately, very little research has been done to evaluate and

improve I/O performance of Java-based HPC applications. The main hindrance in

the development of efficient parallel I/O Java libraries is the lack of a standard

MPI-IO like API.

1.1 High Performance Computing

High Performance Computing is a branch of computer science that

concentrates on writing high performance software on parallel hardware. One of

the main areas of this discipline is to develop parallel processing algorithms and

software, which are programs that can be divided into little pieces so that each

piece can be executed simultaneously by a separate processor. Complex scientific

problems have been solved for many years through high performance computing

and facilities have been set up to run large number of codes in an efficient manner.

HPC is used to solve many complex problems like climate modeling, turbulence,

protein folding, patterns and speech recognition etc.

The calculation and solving of complex scientific problems can also be done

by serial computing as well but there are several problems are associated with

serial computing. First, the no of processors that work concurrently will always

remain single, as it is serial computing. Second, the number of transistors present in

single processor chip can only increase to a certain value showing the limited

functionality of serial computing. Thus the need for parallel computing aroused

Design and Development of a Java Parallel I/O Library Page 13

that is the need to perform many tasks concurrently. Through parallel computing,

the real-world scientific problems are solved in a less time as more number of

processors are working to solve the same problem.

The scientific problems are solved by combining computer clusters and

making all the clusters as a part of a single computational machine. This machine is

then able to perform complex computations and calculations. The speed of

computations and calculations has increased manifold in the high performance

computing domain. However, the parallel I/O speed has not increased in the same

pace, which is a great bottleneck in performing parallel I/O operation. Thus, the

gap and difference of performance needs to be fulfilled between computations and

parallel I/O. Although computational speed will always be greater than parallel I/O

speed still the gap can be minimized.

HPC applications are written by following the message passing standard

called as MPI (message passing interface). MPI is a specification of a message

passing library. It is not a library itself but defacto standard for writing HPC

applications. The implementation of MPI-I/O or MPI-2 standard is ROMIO.

MPICH-2 is an implementation of the message passing interface (MPI-2.2) and

ROMIO is part of the MPICH-2. It also provides a tool for MPI implementation

research and for developing new and better parallel programming environments.

MPICH-2 replaced MPICH1. Open MPI is a message passing interface (MPI)

library combining technologies and resources from several other projects (FT-MPI,

LA-MPI and PACX-MPI). It is used by many supercomputers with roadrunner,

which was the world's fastest supercomputer from June 2008 to November 2009.

1.2 Java Based HPC

Although MPI in C and Fortran did become very popular in the beginning

but there are some shortcomings in C. The MPI in C does not provide portability

and multi-threading.

Design and Development of a Java Parallel I/O Library Page 14

Java was considered as a very strong candidate in JGF (Java grande forum)

and APIs were proposed in significant amount for implementation for MPI in Java.

Thus two APIs were made in the name of mpiJava and MPJ. This significant

number of implementations has been made with the name of MPJ /Express,

mpiJava and MPJ/Ibis. MPJ/Ibis implements MPJ API and uses pure java devices

that make use of java.io and java.nio packages to implement non-blocking and

blocking communications at device level.

There has been very little research in I/O capabilities of Java but still there

is no standard API for Java. Java has many qualities which makes it very easily the

far better language than others. Java supports multi-threading, compile-time and

run-time secure environment. Java provides automatic garbage collection unlike C.

Also Java has the feature of portability due to which it is the most widely used

language in the internet-based applications and shows that Java can perform on any

platform given. Thus Java can prove to be better performing language than the

other predecessors and we will use this language in our project to make a parallel

I/O library.

1.3 I/O Requirements in High Performance Computing

Parallel I/O points to the capability of the program to read/write the data

from/to the file using several processes which are present in distributed momory

platforms.

Significant amount of increase has been done in storage and the

computational power of the processors has been increased. Also the enhancements

have been done in CPU and communication performance of the parallel machines.

However same enhancements have not been made in I/O performance. The amount

of storage has increased but the increase in the individual disk performance has not

been done at the same pace. The peak performance has reached up to hundreds of

Tflops /second of speed but the speed of I/O is only 100 Mb/s or less. Thus the

speed of performance is very high but the I/O speed is low and is the bottleneck in

Design and Development of a Java Parallel I/O Library Page 15

applications requiring parallel I/O. This is the reason why parallel I/O libraries

have been made in C, C++ and Fortran.

In the last two decades, there has been considerable amount of research in

performing parallel I/O operations in languages like C,C++ and Fortran. As a result

of this, several high performance libraries including ROMIO (implementation of

MPI-IO), parallel HDF5, Parallel I/O (PIO), and parallel net CDF are available

today that provide efficient I/O for scientific applications. However, very little

research has been done to evaluate I/O in Java based HPC applications and the

reason behind this is that no standard API has been developed for performing

parallel I/O in Java. There is existing standard API like MPI-I/O in C which is not

yet present in Java. Some amount of research has been done but there is no defacto

standard which would help to enhance the parallel I/O capabilities in Java. Thus as

part of the project we will develop a MPI-I/O equivalent implementation in Java

which will be the standard parallel I/O library in Java. Existing projects on the

same line include mpiJava, MPJ/Ibis.

There are two types of memory platforms, shared and distributed memory

platforms. In shared memory platforms [Fig 2], all the tasks access the same

memory while in distributed memory platforms [Fig 1]; the memory is local to all

the processes and is shared. The distributed platform performs parallel I/O but the

memory platform exists in the same place and all the processes perform the

operation independently. Real parallel I/O is done by the shared memory platform

as the memory is shared by the processes and all the processes work concurrently.

Design and Development of a Java Parallel I/O Library Page 16

Figure 1-1Distributed Memory Architecture

Figure 1-2Shared Memory Architecture

1.3.1 Shared Memory Systems

Shared-memory systems are ones that have a common address space

accessible to multiple nodes (processors). Shared memory locking mechanism is

used to asynchronously read and write data from the memory. Such a model

contains some inherent challenges such as race-conditions, deadlocks. Algorithms

and techniques exist to avoid such challenges.

Design and Development of a Java Parallel I/O Library Page 17

1.3.2 OpenMP

Open mp is an API based on threads and provides parallelization mechanisms

on shared-memory multiprocessors. OpenMP defines compiler directives that

specify regions of code that should be parallelized and define specific options for

parallelization. Some pre-compiler tools also exist which can automatically convert

serial programs into parallel programs by inserting compiler directives at

appropriate places, making the parallelization of a program even easier.

OpenMP uses a thread-based fork-join model of parallel execution. The

program runs a master thread serially until it reaches a directive to fork a team of

threads that can be executed on different processors. Output from these threads can

then be merged at the end of the parallel region, as master resumes its serial

execution (till the next parallel directive). Fig [4] describes Fork/Join model

adopted by OpenMP.

Master Thread

Fork Thread

Fork Thread

Fork Thread

Master Thread

Fork Thread

Fork Thread

Master Thread

Parallel Task

Parallel Task

Join

Fork

Figure 1-3Master thread forks a number of threads that execute code in parallel

Design and Development of a Java Parallel I/O Library Page 18

1.3.3 Parallel I/O Approach

Figure 1-4Parallel I/O Approach

Different approaches to performing parallel I/O have been shown In Fig 1-4.

In a part, only one process or node1 is performing an I/O and the other three nodes

are communicating with the node 0 which is performing the write operation on the

file. This shows that the process is serial and also is slow as only one process is

performing the operation. In part b four nodes or processes are performing their

write operation concurrently and their operation is independent of the other

processes. This is a parallel I/O operation and distributed memory architecture

shown in Fig 6 is elaborated here. In part c, all of the four nodes are performing

parallel I/O operation from the same storage.

1.4 I/O Requirements in Java

Parallel I/O research has been performed in C and language like C performs

excellent operations in parallel I/O. In C, multidimensional arrays can be seen as

one-dimensional array of the same length. C also allows casting of any type to the

array of bytes. There is no need for synchronization while performing parallel I/O

in C. Every process can access an independent regions of a shared random access

file and perform the reads and writes in parallel to different areas of the file.

Design and Development of a Java Parallel I/O Library Page 19

However due to some reasons like portability and multi-threading, other

choices of languages have been considered which has lead to the choice of an

object oriented language like Java. As written earlier, Java has many qualities

which make it much more viable and useful for parallel I/O. The biggest feature of

Java is its portability due to which this language has become the choice of many

HPC applications.

Java I/O model is divided into two parts byte-oriented I/O and text-oriented

I/O. Byte-oriented I/O relates to the data items of int, float, double etc and text-

oriented is related to the characters and texts. Our main concern is the model for

byte-oriented I/O. For byte-oriented I/O, the classes of input streams and output

streams are used where stream is the ordered sequence of bytes.

Figure 1-5Java I/O Class Hierarchy

Input stream and output stream are classes and both consist of subclasses like

file output stream, byte array output stream and filter output stream. Same for

stands for the input stream hierarchy. Filter output stream consist of more

subclasses. First one is the buffered output stream and second one is the data output

stream. File output stream and file input stream are used to write and read to or

from the file respectively. Byte array input and output stream is used to read or

write from or to the byte array respectively. Filter streams give methods to chain

Design and Development of a Java Parallel I/O Library Page 20

streams together to build composite streams. Random access file block is not

connected with any of the class hierarchies. Thus the data output stream can be

chained to byte array output stream in order to reduce the number of calls to the file

system

1.5 Problem statement

Therefore, from the discussion, it is clear that we need to design and develop

a Java Parallel I/O Library. Since other native languages like C and Fortan have

Parallel I/O libraries and we will compare the performance of our Java Parallel IO

library with these existing libraries. Thus our problem statement is ―Design and

development of Java parallel I/O library and comparison of the performance with

the C, C++ and Fortran counterparts through proprietary networks including

Myrinet and Infiniband.‖

Design and Development of a Java Parallel I/O Library Page 21

Chapter 2

2 LITERATURE REVIEW

 In the last two decades, there has been significant research in improving

the performance of I/O operations in scientific computing for traditional languages

including C, C++, and Fortran. As a result of this, several mature and high-

performance libraries including ROMIO (implementation of MPI-IO), parallel

HDF5, Parallel I/O (PIO), and parallel net-CDF are available today that provide

efficient I/O for scientific applications. However, there is very little research done

to evaluate and improve I/O performance of Java-based HPC applications. The

main hindrance in the development of efficient parallel I/O Java libraries is the lack

of a standard API (something equivalent to MPI-IO). Some ad-hoc solutions have

been developed and used in proprietary applications, but there is no general-

purpose solution that can be used by performance hungry applications.

2.1 MPI-IO

POSIX provides a highly portable file system but optimized parallel IO

cannot be achieved with POSIX interface. Optimized and efficient I/O could be

achieved if a standard exist which provides partitioning of the file among the

processes and collective IO routines for memories and files. Efficiencies can be

gained with support of asynchronous I/O accesses to the physical files and the

storage devices. Instead of defining I/O access modes to express the common

patterns for accessing a shared files (broadcast, reduction, scatter, gather), we chose

another approach in which data partitioning is done in derived data types. This

approach has advantage of flexibility and expressiveness as compared to previous

approach of defining some routines for common patterns of broadcast, reduction,

scatter and gather.

2.2 Parallel MPI IO in C, C++, Fortran

In last two decades, there has been significant research in improving the

performance of I/O operations in scientific computing for traditional languages

Design and Development of a Java Parallel I/O Library Page 22

including C, C++, and Fortran. As a result of this, several mature and high-

performance libraries including ROMIO (implementation of MPI-IO), parallel

HDF5, Parallel I/O (PIO), and parallel netCDF are available today that provide

efficient I/O for scientific applications.

2.2.1 ROMIO (Implementation of MPI-IO)

ROMIO is a high-performance, portable implementation of MPI-IO, and the

I/O chapter in MPI-2. Version 1.2.5.1 of ROMIO (January 2003) is freely

available.

ROMIO runs on at least the following machines: IBM SP; Intel Paragon; HP

Exemplar; SGI Origin2000; Cray T3E; NEC SX-4; other symmetric

multiprocessors from HP, SGI, DEC, Sun, and IBM; and networks of workstations

(Sun, SGI, HP, IBM, DEC, Linux, and FreeBSD). Supported file systems are IBM

PIOFS, Intel PFS, HP/Convex HFS, SGI XFS, NEC SFS, PVFS, NFS, and any

UNIX file system (UFS).

2.2.1.1 Features in ROMIO:

ROMIO is optimized for noncontiguous access patterns, which are common

in parallel applications. It has an optimized implementation of collective I/O, an

important optimization in parallel I/O. ROMIO 1.2.5.1 includes everything defined

in the MPI-2 I/O chapter except support for file interoperability and user-defined

error handlers for files. C, Fortran, and profiling interfaces are provided for all

functions that have been implemented. It has implemented the subarray and

distributed array datatype constructors from the MPI-2 miscellaneous chapter,

which facilitate I/O involving arrays. It has also implemented the info functions

from the MPI-2 misc. chapter, which allow users to pass hints to the

implementation.

ROMIO is designed to be used with any MPI implementation. It is, in fact,

included as part of several MPI implementations: Version, 1.2.5, is included in

MPICH 1.2.5; an earlier version is included in LAM, HP MPI, SGI MPI, and NEC

MPI. Version 1.2.5.1 is mainly a bug fix release.

Design and Development of a Java Parallel I/O Library Page 23

ROMIO is freely available and is distributed in the form of source code.

2.2.2 Parallel HDF5

An API to support parallel file access for HDF5 files in a message passing

environment. It provides fast parallel I/O to large datasets through standard parallel

I/O interface. Processes are required to do collective API calls only when structural

changes are needed for the HDF5 file.

Each process may do independent I/O requests to different datasets in the

same or different HDF5 files. It supports collective I/O requests for datasets (to be

included in next version). Minimize deviation from HDF5 interface.

2.2.2.1 Features Supported in Parallel HDF5

It supports fixed dimension sized datasets, Extendible dimension sized

datasets, Chunked storage datasets. Compression support: read only, no write. Data

types: Integer, Float, String classes. Variable sized type support: read only, no

write. I/O mode Independent read or writes. Collective read or write (collective as

defined in MPI).

 Limits Chunked storage (including extendible dimension sized datasets)

does not support writing to overlapping chunks. That is process m and process n do

not writing to the same chunk at the same time. If that happens, the result is

undetermined. No write for compressed datasets. No write for variable length data

types.

2.2.3 Parallel IO

PIO is an intermediate software layer the allows you to write data in either

binary or netcdf format using either serial writes or parallel libraries such as MPI-

IO and PnetCDF through a single interface.PIO is written in Fortran90.

The Parallel I/O (PIO) library was developed over several years to improve

the ability of component models of the Community Climate System Model

(CCSM) to perform I/O. However we believe that the interface is sufficiently

Design and Development of a Java Parallel I/O Library Page 24

general to be useful to a broader spectrum of applications. It currently supports

netcdf, pnetcdf and MPI-IO.

PIO calls are collective, an MPI communicator is set in a call to PIO_init and

all tasks associated with that communicator must participate in all subsequent calls

to PIO. An application can make multiple calls to PIO in order to support multiple

MPI communicators.

To use PIO your program should begin by calling the PIO_init function

providing the MPI communicator and the rank within that communicator of the

calling task. You should also provide the number of I/O tasks to be used, the stride

or number of tasks between I/O tasks, and the number of MPI aggregators to be

used. You may optionally also choose the base IO task; this task will be used for

output of any non-decomposed data. This call initializes an IO system type

structure that will be used in subsequent file and decomposition functions.

You can then open a file for reading or writing with a call to PIO_createfile

or PIO_openfile. In this call you will specify the file type: pio_iotype_netcdf,

pio_iotype_pnetcdf, or pio_iotype_binary, or the new netcdf4 types

pio_iotype_netcdf4c, pio_iotype_netcdf4p; along with the file name and optionally

the netcdf mode.

To read or write decomposed data you must first describe the mapping

between the organization of data in the file and that in the application space. This is

done in a call to PIO_initdecomp. In the simplest call to this function a one

dimensional integer array is passed from each task the values in the array represent

the 0 based offset from the beginning of the array on file.

2.2.4 Parallel NetCDF:

Parallel-NetCDF is a library providing high-performance I/O while still

maintaining file-format compatibility with Unidata's NetCDF.

Design and Development of a Java Parallel I/O Library Page 25

 NetCDF gives scientific programmers a space-efficient and portable means

for storing data. However, it does so in a serial manner, making it difficult to

achieve high I/O performance. By making some small changes to the API specified

by NetCDF, we can use MPI-IO and its collective operations.

Parallel-NetCDF makes use of several other technologies. ROMIO, an

implementation of MPI-IO, provides optimized collective and noncontiguous

operations. It also provides an abstract interface for a large number of parallel file

systems. One of those file systems ROMIO supports is PVFS, a high performance

parallel file system for Linux clusters.

2.3 Java based IO

There are very little Efforts done in evaluating and improving the I/O

performance of HPC applications. The main hindrance in the development of

efficient parallel I/O Java libraries is the lack of a standard API (something

equivalent to MPI-IO). Some adhoc solutions have been developed and used in

proprietary applications, but there is no general-purpose solution that can be used

by performance hungry applications.

2.3.1 Evaluation of java’s IO Capabilities

Java is becoming popular language for writing distributed applications

because of its support for programming in distributed platform. It provides

automatic garbage collection, run-time and Compile-time securities, portability,

multithreading, support for persistent object and object migration, so there is a

growing need for using java in HPC applications. Java should meet IO

requirements of HPC to be successful in HPC domain.

This paper provides a detailed discussion and performance analysis of several

approaches to parallel file IO available in java in two different parallel architecture

and file system. Many scientific applications need to access large amount of data

and IO often creates bottleneck in such applications. IO is divided into two parts in

Java, one is byte-oriented which includes bytes, floats and integers and the other IO

Design and Development of a Java Parallel I/O Library Page 26

is text-based which includes character and text. Byte oriented IO in characterized

by input streams and output streams. Java provides input stream and output stream

classes for reading and writing.

Using raw byte arrays is an approach for performing parallel file IO in Java.

If data is already in bytes form we can use java methods to read/write byte arrays

however these java methods are only defined for byte-oriented data. If multiple

threads of a parallel program need to write different parts of array to common file

concurrently then we have to use threads in parallel and set offsets for random

access to read/write objects in the shared file. This approach works correctly for

both, when the new file is overwritten or new file is created because of the seek

method semantics.

Mostly scientific applications operate on array of integers, floats and doubles

instead of byte arrays but java provides no method for performing IO operations for

arrays of integer, float or double so we explicitly convert byte-array of some other

data type into an array of bytes and vice versa. We can write an array of integers by

right shifting one byte at a time into a byte array and then writing the byte array

while reading array of integers we can first read it into a byte array and then

converting the byte array into integers. There is an issue of signed bit while

converting integer array into bytes array or vice versa as java does not have

unsigned data type so we take care of signed bit while conversion to/from array of

bytes.

Java provides methods to read/write a single integer at a time in DataInput

and DataOutput interface. RandomAccessFile class implements DataInput and

DataOutput interfaces that is relatively easy to perform parallel IO using data

streams. WriteInt is used to write single integer at a time.

Unbuffered data streams results in poorest performance because read write

methods are called for each integer. RandomAccessFile class does not implement

buffering and Filter Output/Input Streams only work with objects of InputStream

and OutputStream .A random access file can be chained to a FileInputStream or

Design and Development of a Java Parallel I/O Library Page 27

FileOutputStream object through file descriptor. FileInputStream or

FileOutputStream object can be chained to BufferedInputStream or

BufferedOutputStream objects which can be chained to DataInputStream and

DataOutStream objects. Writing buffered data stream is unsafe for writing

concurrently from multiple processes or threads to a common random access file

because each thread maintains local buffer.

Using buffering with byte array stream is another approach to parallel file IO

in Java. It allows buffering data input/output streams to chain it with underlying

byte array stream .Read/write operations will be directed to byte streams rather

than disk directly. After completion of writing toByteArray method is used to write

data from byte array to shared file. Using byte arrays streams for reading

operations are more complex. Each thread declares its own byte array and creates

objects of ByteArrayInput and DataInputStream objects and seeks appropriate

location in file. Each thread reads from the file into its byte array using read

methods. Data is transformed from the byte array into the integer array using the

read method of the data input stream class.

IO method are the only methods which provide reasonable IO performance

.Real application need read write bulk of data which is mostly integer, float and

double type. Read/write single integer or other data type results in poor

performance. Java should provide Streams for read/write data and also provide its

implementations to perform reasonable IO operation. Multidimensional arrays

could be read/write by calling one dimensional array read/write methods. For high

performance computing application developers would need a high-level parallel IO

library (like MPI-IO) for java. Such library will benefit from the proposed methods

for implementing reasonable parallel IO operations.

DataStream methods in Java provide poor performance even with careful

selection of buffer size. To achieve reasonable performance, application is must use

low-level IO methods to read/write array of bytes. Application must convert array

of integer into array of byte or provide data stream methods in Java which could

Design and Development of a Java Parallel I/O Library Page 28

manipulate data type integer, float, double and other data types. This will be

helpful for performing efficient parallel IO operations in java and will help in

implementation of parallel IO library.

The main purpose of this study is to evaluate the support for efficient (and

parallel) I/O in the Java programming language that can be used in high

performance scientific applications. It identifies that I/O libraries provided by Java

Development Kit (JDK) lack efficient support for array I/O operations of any data-

type other than bytes. Most real-world scientific applications operate on data-types

other than bytes as well. There are several ways to overcome this bottleneck—the

study proposes the following approaches:

The main purpose of this study is to evaluate the support for efficient (and

parallel) I/O in the Java programming language that can be used in high

performance scientific applications. It identifies that I/O libraries provided by Java

Development Kit (JDK) lack efficient support for array I/O operations of any data-

type other than bytes. Most real-world scientific applications operate on data-types

other than bytes as well. There are several ways to overcome this bottleneck—the

study proposes the following approaches:

a) Using Raw Byte Arrays: Multiple threads of a parallel program can write to

different parts of a byte array.

b) Converting to/from an Array of Bytes: Other array types can first be

converted to/from byte arrays to perform efficient I/O operations. The

conversion in this process becomes a major bottleneck.

c) Using Data Streams: Read/write a single integer at a time but it is extremely

inefficient.

d) Using Buffered Data Streams: Utilize buffering for reading/writing to/from

the files. This approach is not safe to use with multiple threads.

e) Using Buffering with Byte Array Streams: Buffer data to byte arrays and

then perform I/O on disk.

Design and Development of a Java Parallel I/O Library Page 29

f) Bulk I/O: Introduce bulk I/O operations for array data types other than bytes.

Authors implement bulk I/O extensions on standard JVMs (using Java Native

Interface (JNI)) and the Titanium language.

 The JNI based bulk I/O extensions were originally presented in "Bulk File

I/O Extensions to Java," but later became part of ―Evaluation of Java’s IO

capabilities‖. These can be downloaded from [16]. The extensions include a Java

class called BulkRandomAccessFiles. This class adds a few new methods, in

addition to the java.io.RandomAccessFile class, for reading and writing either

entire arrays of primitive data-types or a contiguous sub-sequence of elements in

the array.

2.4 Existing Java parallel I/O projects

Java Sies, NetCDF Java library, Parallel Java (PJ) library, JExpand, Agent

Team Work MPI-IO like library are the java based parallel IO libraries which are

already created but most of them are not available for download or does not have

parallel IO support or have some other issue so there are reasons for not

recommending these libraries and there is need to develop a Java based parallel IO

library which provides support for parallel IO.

2.4.1 Parallel Java library

PDF (Parallel Datastore System) is newly created system and allows

read/write operations to/from a single logical storage files in parallel.PDF inspired

by the likes of MPI-IO but is not compatible with any other popular APIs including

MPI-IO.

Two group of classes are used, one for vectors and other for matrix.

PDF is like MPI-IO but not compatible with MPI-IO, parallel NetCDF or

PIO. It makes use of PJ library for communication. Parallel Java is a pure Java, it

does not support the native interconnect hardware like Myrinet and Infiniband.

2.4.2 Parallel file system

A parallel file system is one in which there are multiple servers as well as

clients for a given file system, the equivalent of RAID across several file servers.

Design and Development of a Java Parallel I/O Library Page 30

Parallel file systems are often optimized for high performance rather than

general purpose use very large block sizes (=>64kB) and relatively slow metadata

operations compared to reads and writes. They have special APIs for direct access

Examples of parallel file systems: GPFS (IBM) Lustre (Cluster File Systems) PVFS2

(Clemson/ANL)

2.5 MPJ Express

Efforts to develop parallel applications in Java were proposed at the Java

Grande Forum in 1998 not long after it was introduced as a language.

Earlier, developers had to choose between high performance and portability

in parallel computing applications. PVM provided a highly portable approach to

high performance computing; on the downside it was not comparable to the

performance of the later MPI implementations in C and Fortran. MPI

implementation in traditional C and Fortran have dominated as the most popular

MPI implementation languages. These languages also lack modern language thread

safety features, portability and object oriented approach.

MPJ Express provides Java bindings for MPI; it has built-in thread safety, a

layered architecture and addresses the issues of high performance and portability

by providing communication drivers using Java NIO (pure Java approach) and

Myrinet.

Earlier efforts for building a Java messaging systems have typically followed

either the JNI approach, or the pure Java approach. On commodity platforms

advances in JVM technology now enables networking applications written in Java

to rival their C counterparts. Improvements in specialized networking hardware has

meant cutting down communication costs to a couple of microseconds [8].

Plans intending to increase MPJ Express's performance to make it

comparable with C-based libraries such as MPICH2 and OpenMPI are underway;

these include adding support for native device libraries and extending support for

Infiniband.

Design and Development of a Java Parallel I/O Library Page 31

MPJ Express is a Java based implementation of MPI having features of

thread safety, layered architecture and addresses the issues of high performance

and portability by providing communication drivers using Java NIO (pure Java)

and Myrinet which can be swapped at runtime.

MPJ Express is a pure Java based messaging system that implements the MPI

functionality using sockets. An intermediate buffering layer has been implemented

to avoid the buffer copying overheads, suffered by some existing Java messaging

systems. MPJ Express has a layered design that allows incremental development,

and provides the capability to update and swap layers in or out as needed. This

helps mitigate the contradictory requirements of end users because they can opt to

use high-performance proprietary network devices or choose the pure Java devices

that use sockets. Figure 8 explains current MPJ Express design and different levels

of the software: the MPJ API, high level, base level, mpjdev and xdev.

Figure 2-1Layered architecture of MPJ Express

MPJ Express currently implements the mpiJava 1.2 API with a few changes.

The top layer represents the exported API which defines approximately 125

functions. The next two layers implement collective communications and point to

point communications. Collective communications are implemented using point to

point communications.

Design and Development of a Java Parallel I/O Library Page 32

Chapter 3

3 DESIGN AND IMPLEMENTATION

 We have developed a Java-based parallel I/O API and its reference

implementation. This prototype implementation will become part of the MPJ

Express (http://mpj-express.org) software, which is a Java MPI library developed at

the HPC lab. There was no Java binding present for parallel I/O which could meet

a standard for all performance hunger application developers to provide efficient

I/O in Java based HPC. There exists MPI-IO standard library which provides

routines and implementations which are performing efficient I/O.

Figure 3-1Architecture Diagram

http://mpj-express.org/

Design and Development of a Java Parallel I/O Library Page 33

Java needs for development of distributed applications is growing because

Java provides features of multi- threading, automatic garbage collection, compiles

time and run time security and threads safety. These features provided by Java are

the main reason for motivating programmers and developers to use it.

HPC involves lot of computations and lot of work has been done in C and

Fortran. There are APIs in these languages which provide I/O bindings and they are

working efficiently. MPI-IO is a standard C based API which provides C and

Fortran routines for I/O operation.

3.1 Java NIO Based Parallel I/O

Java NIO provides buffer classes for primitive data types therefore we don’t

need explicit or implicit conversions for I/O operations. It provides buffer classes

for Int, float, long, char, double, short and Byte Buffer. Buffer class has three main

parameters which are position, limit and capacity. The position specifies the buffer

index to/from we need I/O operation. Limit determines the number of items we

want to read/write and the capacity is the total buffer capacity.

3.1.1 Memory Mapped File

Memory Mapped File is a magic provided by NIO and is helpful to create

and edit large file size which are hard to bring in memory .It takes them as large

arrays and moves required pages into the memory on demand. It allows

programmers to directly access the contents from memory. It is achieved by

mapping whole file or only a segment of file into memory.

3.1.2 Java NIO facilities

Java IO API provides Streams for I/O operations while NIO provides

channels for IO. We are using file channel class for the I/O to/from files. It is fast

access to the memory than Streams I/O but it could have problem of page faults

while accessing a page from memory which is not already mapped. Reading and

writing on memory mapped file is done by operating system, so even if your Java

Program crash after putting content into memory it will make file until OS is fine.

Design and Development of a Java Parallel I/O Library Page 34

3.2 Evaluation of NIO Approaches for Parallel Java I/O

We have evaluated 4 approaches to first write 1G data to a file and then read

that from the from the file. The approaches tested are as follows

 Using FileChannel with view Buffer

 Using FileChannel in MappedMode

 Using RandomAccesFiles

 Using BulkRandomAccesFiles

3.2.1 BulkRandomAccessFiles

BulkRandomAccesFiles uses extension of Java and titanium language and

it’s not a part of standard JDK.It provides methods for reading and writing arrays

of primitive data types but we are interested in only java based I/O so we will not

entertain it.

3.2.2 RandomAccessFiles

RandomAccesFiles approach duplicates the functionality of Input Stream and

Output Stream. It implements the DataStream interface and provides I/O methods

for primitive data types only one element at a time which is an overhead because

lot of switches are required to read write based on the data size.

3.2.3 FileChannel with viewBuffer

In our FileChannel with viewBuffer approach we are using asIntBuffer () for

Int data-type in our discussion but the same holds true for all other primitive data-

types. A view buffer is simply another buffer whose content is backed by the byte

buffer. We exploit this functionality, in our proposed approaches, to perform

memory operations on the view buffer and use the backing ByteBuffer object for

I/O operations on a file using the FileChannel object.

3.2.4 FileChannel in MappedMode

In our technique of MappedMode the memory mapping is done and a portion

of memory is brought into memory so we can create and edit large files. It gives

Design and Development of a Java Parallel I/O Library Page 35

illusion of file existence in memory and I/O can be performed from main memory

which is highly beneficial to enhance our bandwidth for I/O operations.

3.3 Proposed Approaches for Performing Parallel Java I/O

We have proposed only first two approaches after our evaluation and we will

be using these approaches for designing and implementing our Java based Parallel

I/O API. We are using only these approaches because they give better bandwidth

and persistent results.

We are inspired by MPI-IO and have shortlisted 19 out of 52 methods for our

prototype implementation of our proposed Java Parallel IO API.We has

implemented highlighted methods given below as our prototype of Java Parallel

I/O API.

3.4 Proposed MPI-IO routines for Developing Parallel I/O Java

API

File Manipulation

int MPI File open(MPI Comm comm, char *filename, int amode, MPI Info info,

 MPI File *fh)

int MPI File close(MPI File *fh)

File views

int MPI File set view(MPI File fh, MPI Offset disp, MPI Datatype etype,

 MPI Datatype filetype, char *datarep, MPI Info info)

File consistency

int MPI File set atomicity(MPI File fh, int flag)

int MPI File get atomicity(MPI File fh, int *flag)

int MPI File sync(MPI File fh)

Data Access with Individual File Pointers

int MPI File seek(MPI File fh, MPI Offset offset, int whence)

Design and Development of a Java Parallel I/O Library Page 36

int MPI File get position(MPI File fh, MPI Offset *offset)

int MPI File get byte offset(MPI File fh, MPI Offset offset,

 MPI Offset *disp)

Individual file pointers – non collective – blocking

int MPI File read(MPI File fh, void *buf, int count, MPI Datatype

datatype,

 MPI Status *status)

int MPI File write(MPI File fh, void *buf, int count, MPI Datatype

datatype,

 MPI Status *status)

Individual file pointers – non collective – non-blocking & split collective

int MPI File iread(MPI File fh, void *buf, int count, MPI Datatype

datatype,

 MPI Request *request)

int MPI File iwrite(MPI File fh, void *buf, int count,

 MPI Datatype datatype, MPI Request *request)

Individual file pointers – collective – blocking

int MPI File read all(MPI File fh, void *buf, int count,

 MPI Datatype datatype, MPI Status *status)

int MPI File write all(MPI File fh, void *buf, int count,

 MPI Datatype datatype, MPI Status *status)

Individual file pointers – collective – non-blocking & split collective

int MPI File read all begin(MPI File fh, void *buf, int count,

 MPI Datatype datatype)

int MPI File read all end(MPI File fh, void *buf, MPI Status *status)

int MPI File write all begin(MPI File fh, void *buf, int count,

 MPI Datatype datatype)

int MPI File write all end(MPI File fh, void *buf, MPI Status *status)

Design and Development of a Java Parallel I/O Library Page 37

Table 3-1 Data Access Routines

3.5 Implementation of proposed routines

We have provided the MPJ-IO specs based on MPI-IO specs defined in MPI-

2.2 standard document. Our prototype implementation details of the proposed

methods are given here.

MPJ Classes MPI Operations

mpj.File class MPI_File

mpj.Info class MPI_Info

mpj.Offset class MPI_Offset

3.5.1 File Manipulation

All the collective operations are based on Communicator objects. There are

two type of communicators; Intracomm and Intercomm. The MPI-IO operations

are relevant to Intracomm class so we will translate the collective

MPI_FILE_OPEN and MPI_FILE_CLOSE operation to methods of the Intracomm

class. We note that the mpj.File class used in the method signatures is not to be

confused with java.io.File class. In this document, whenever File is used, it means

the mpj.File class and not java.io.File class

Design and Development of a Java Parallel I/O Library Page 38

3.5.1.1 Opening a File

The Java binding of the MPI operation MPI_FILE_OPEN.

File File.open(String filename, int amode, Info info)

File open is a collective operation. We have used file channels which are

present in Java NIO (Just like streams in Java I/O) for opening connections. Once

we open a file, all process in the same communication group can operate this

opened file. The process of only rank 0 opens the file and file handler is obtained

from the Object if it is not already exist, then file object is created. The filename is

name of the file and amode specifies the mode in which we are going to open this

file, it could be read, write or both read and write mode. We have used info class

which provides methods to set information and to get the information of the file

which we have opened. The open method returns file object which could be further

manipulated by other methods.

3.5.1.2 Closing a File

The Java binding of the MPI operation MPI_FILE_CLOSE.

void File. close()

File close is a collective call. This method is called from Intracom.Once a file

is closed, all the process in the communication group couldn’t access that file for

further manipulations. You have to reopen that file in order to perform I/O

operations on that file. We close a file using file handler or file object.

3.5.1.3 File Info

The Java binding of the MPI operation MPI_FILE_SET_INFO.

void File.setInfo(Info info)

The Java binding of the MPI operation MPI_FILE_SET_INFO.It is a

collective routine.We use MPI setinfo method to set the information of the Info

Object. We then use MPI_FILE_GET_INFO which returns the info of the object.

Design and Development of a Java Parallel I/O Library Page 39

3.5.2 File Views

The Java binding of the MPI operation MPI_FILE_SET_VIEW.

void File.setView(Offset disp, Datatype etype, Datatype filetype,

String datarep, Info info)

The setView routine changes the process's view of the data in the file. The

start of the file is set to disp.We have made setoffset method to set disp.We

determine the type of data by etype .File type and etype are set to same so that auto

conversion in primitive data types could be done without any costly operation of

type conversion.

The Java binding of the MPI operation MPI_FILE_GET_VIEW.

StringBuffer is used so that the datarep is passed-by reference and the changes in

the body of the method reflect to the object itself.

void File.getView(Offset disp, Datatype etype, Datatype filetype,

StringBuffer datarep)

3.5.3 Consistency and Semantics

Consistency semantics define the outcome of multiple accesses to a single

file. All file accesses in MPI are relative to a specific file handle created from a

collective open. The MPI-IO semantics have scope of communicator group to open

the file. MPI-IO guarantees the concurrent nonoverlapping writes correctly and

changes are visible immediately to the writing process immediately.

Consistency is achieved by atomicity and synchronization. Java binding for

the MPI operation MPI_FILE_SET_ATOMICITY.

void File.setAtomicity (boolean flag)

 Java binding for the MPI operation MPI_FILE_GET_ATOMICITY returns

the current consistency semantics for data access operations on the set of file

Design and Development of a Java Parallel I/O Library Page 40

handles created by one collective open. If flag is true, the atomic mode is enabled

and if the flag is false then monatomic mode is enabled. We have implemented set

Atomicity and get atomicity methods to set atomic mode and to get current

semantics of data access operations on the set of handlers created by one collective

open. .

Java binding for the MPI operation MPI_FILE_SYNC.

void File. sync ()

 Calling MPI_FILE_SYNC with fh causes all previous writes to fh by the

calling process to be transferred to the storage device. If other processes have made

updates to the storage device, then all such updates become visible to subsequent

reads of fh by the calling process.MPI_FILE_SYNC may be necessary to ensure

sequential consistency in certain cases MPI_FILE_SYNC is a collective operation.

Calling MPI_FILE_SYNC with fh causes all previous writes to fh by the calling

process. The user is responsible for ensuring that all nonblocking requests and split

collective operations on fh have been completed before calling MPI_FILE_SYNC

otherwise, the call to MPI_FILE_SYNC is erroneous.

3.5.4 Data Access

3.5.4.1 Data Access Routines

There are three aspects to data access routines, positioning, synchronizing

and coordination. Positioning is done by explicit offsets or implicit offsets.

Coordintion is no-collective and collective. The following combinations of these

data access routines include two types of pointers which are individual file pointers

and shared file pointers.

3.5.4.2 Data Access with Individual File Pointers

 MPI maintains one individual file pointer per process per file handle. The

current value of this pointer implicitly specifies the offset in the data access

routines described in this section. These routines only use and update the individual

file pointers maintained by MPI.

Design and Development of a Java Parallel I/O Library Page 41

 After an individual file pointer operation is initiated, the individual file

pointer is updated to point to the next etype after the last one that will be accessed.

The file pointer is updated relative to the current view of the file.

Java binding for the MPI operation MPI_FILE_READ.

Status File.read(Object buf, int bufOffset, int count,

Datatype datatype)

This routine provides blocking non-collective read operation. This method

reads the file using individual file pointer.

Java binding for the MPI operation MPI_FILE_READ_ALL.

Status File.readAll(Object buf, int bufOffset, int count,

Datatype datatype)

This is the collective version of the blocking read operation using individual

file pointer.

Java binding for the MPI operation MPI_FILE_WRITE.

Status File.write(Object buf, int bufOffset, int count,

Datatype datatype)

This is a noncollective blocking write operation using individual file pointer

Java binding for the MPI operation MPI_FILE_WRITE_ALL.

Status File.writeAll(Object buf, int bufOffset, int count,

Datatype datatype)

This is the collective version of blocking write operation using individual file

pointer.

Java binding for the MPI operation MPI_FILE_IREAD.

Request File.iread(Object buf, int bufOffset, int count,

Datatype datatype)

This is a java binding for nonblocking noncollective read operation.

Design and Development of a Java Parallel I/O Library Page 42

Java binding for the MPI operation MPI_FILE_IWRITE.

Request File.iwrite(Object buf, int bufOffset, int count,

Datatype datatype)

This is a collective routine for performing nonblocking write operation.

Java binding for the MPI operation MPI_FILE_SEEK.

void File.seek(Offset offset, int whence)

Seek method updates the individual file pointer according to the whence.

Whence could be MPI_SEEK_SET, MPI_SEEK_CUR or MPI_SEEK_END

.MPI_SEEK_SET sets the individual file pointer to offset, MPI_SEEK_CUR sets

the individual file pointer to current pointer plus offset and the MPI_SEEK_END

sets the individual file pointer to the end of file plus offset.

Java binding for the MPI operation MPI_FILE_GET_POSITION.

Offset File.getPosition()

This method returns the current position of individual file pointer in etype

units relative to the current view. The offset can be used in a future call to

MPI_FILE_SEEK using whence = MPI_SEEK_SET to return to the current

position. To set the displacement to the current file pointer position, first convert

offset into an absolute byte position using MPI_FILE_GET_BYTE_OFFSET, then

call MPI_FILE_SET_VIEW with the resulting displacement.

Java binding for the MPI operation MPI_FILE_GET_BYTE_OFFSET.

Offset File.getByteOffset(Offset offset)

It converts a view-relative offset into an absolute byte position. The absolute

byte position of offset relative to the current view of fh is returned in disp.It returns

the absolute byte file offset.

Design and Development of a Java Parallel I/O Library Page 43

3.6 Test cases

3.6.1 Coll_test.java

The test uses collective read and write operation to write and then read file. 1KB

data is first written and then read in the file. Buffer of 1KB is made and then this

buffer is written and then read to/from the file.

3.6.2 Async_test.java

 The test uses non-blocking read and write operation to write and then read file.

1KB data is first written and then read in the file. Buffer of 1KB is made and then

this buffer is written and then read to/from the file.

3.6.3 Atomicity_test.java

This test uses simple blocking read and write operation with an addition of

set_atomicity () and get_atomicity() methods. Set_atomicity() sets the atomic mode

to true or false and get_atomicity() outputs the boolean number.

3.6.4 Misc_test.java

This test also uses simple blocking read and write operations along with the other

method calls like getPosition() ,getByteOffset() and seek(). GetPosition() gives the

position of the individual file pointer in the file and getByteOffset() converts offset

into byte position. 1KB data is first written and then read in the file. Buffer of 1KB

is made and then this buffer is written and then read to/from the file.

3.6.5 Perf.java

This test gives the performance evaluation in MB/s. First, the simple read and write

operations are performed without sync() method call and performance is evaluated

in MB/s. After this operation, the same performance evaluation is done with the

sync() method call and the program outputs the numbers in MB/s.

Design and Development of a Java Parallel I/O Library Page 44

Architecture Hierarchy of Implementation is given below.

Figure 3-2 Hierarchy of implementation

Design and Development of a Java Parallel I/O Library Page 45

Chapter 4

4 EVALUATION AND DISCUSSION

4.1 Test Environment

Evaluation of parallel I/O approaches is performed on Barq and RCMS

cluster. The specifications of these clusters are given below. These Clusters are

configured at data centers at NUST H-12 campus.

4.1.1 Barq Cluster (barq.seecs.edu.pk)

The Barq cluster is composed of nine Intel Xeon Based Machines. The

specification of Barq cluster is given below.

Table 4-1Specification of Barq Cluster

Figure 4-1Barq Cluster Nodes

Design and Development of a Java Parallel I/O Library Page 46

4.1.2 Afrit Cluster, RCMS (10.128.0.1)

The RCMS cluster is composed of 34 Intel Xenon based Machines and each

of one is connected to NVidia Tesla S1070.All nodes are connected by 40Gbps

interconnect Infiniband for internal communication. A high-performance and

reliable SAN storage is linked by Servers, accessible by all computational nodes.

The specifications of RCMS cluster are given below.

Table 4-2Specification of RCMS Cluster

Figure 4-2Node structure of RCMS Cluster

Design and Development of a Java Parallel I/O Library Page 47

4.2 Results of Parallel I/O Approaches

The results are for three approaches; ―Using FileChannel with View Buffer‖,

―Using FileChannel in Mapped Mode‖ and ―Using BulkRandomAccessFiles‖.

4.2.1 Results of Parallel access to shared file residing on Local Disk

Figure 4-3 shows the results of tests executed on the shared memory

machine, where Java threads were used for parallel access to the file residing on

local disk. The read operation sustained a maximum bandwidth of approx. 10

GB/sec for file channel with view buffer approach. Exactly same trend and result

was observed when the shared file was placed on NFS storage. Bulk random access

file and file channel in mapped mode performed comparable for both the

configurations, while file channel in mapped mode started to perform better for file

on NFS storage as number of threads increased. This approach achieved a

maximum bandwidth of 6 GB/seconds. The write operation for shared file on disk

could only achieve a maximum bandwidth of 94 MB/sec. for all the three

approaches. We experienced a sudden drop in performance for bulk random access

file and file channel in mapped mode when number of threads increased from 4 to

8.

Figure 4-3Performance of Tests using Java threads for parallel access to a shared file on local disk

Design and Development of a Java Parallel I/O Library Page 48

4.2.2 Results of Parallel access to shared file residing on NFS

Figure 4-4 shows results when the shared file was moved to NFS storage

instead of disk. We noticed that file channel in mapped mode performed

inefficiently when file was moved to NFS storage. The reasons for this can be

locking (mapping) mechanisms used by Java for memory-mapped regions of a file

residing on NFS storage. Overall bandwidth increased significantly for file channel

with view buffer and bulk random access file approaches, both achieved a

maximum bandwidth of approx. 250 MB/sec. up from 94 MB/sec.

Figure 4-4Performance of Tests using Java threads for parallel access to a shared file residing on

NFS storage attached to the Shared Memory Machine

4.2.3 Results of parallel access to shared file residing on NFS storage of the

Distributed Memory Machine

Results of tests executed on our distributed memory machine (cluster) are

shown in Figure 4-5. We used MPJ Express processes instead of threads for tests

on this machine. The read operation provided good speedups with increasing

number of processes. File channel in mapped mode performed slower than other

two approaches which achieved a maximum bandwidth of 40 GB/sec. for 24

processes. The write operation on the other hand saw a significant increase in

performance, as number of processes increased from 16 to 24, for file channel in

mapped mode approach and maximum bandwidth of 375 MB/sec. was achieved.

Design and Development of a Java Parallel I/O Library Page 49

Performance of other two approaches was comparable and a maximum bandwidth

of approximately 275 MB/sec was achieved.

Figure 4-5Performance of Tests using MPJ Express processes for parallel access to shared file

residing on NFS storage of the Distributed Memory Machine

The most stable performance across all configurations and tests was achieved

by file channel with view buffers approach. Write performance increased

significantly while read performance increased slightly, with increase in processes,

for file channel in mapped mode on the distributed memory machine. Bulk random

access file approach performed comparable to the file channel with view buffer

approach.

4.3 Results of prototype implementation

Perf.java is the test case of our prototype implementation which gives the

performance evaluation in MB/s. First, the simple read and write operations are

performed without sync() method call and performance is evaluated in MB/s. After

this operation, the same performance evaluation is done with the sync() method call

and the program outputs the numbers in MB/s.

Design and Development of a Java Parallel I/O Library Page 50

Figure 4-6 Read and Write Test case results

These are preliminary result. These may be different from results of complete

implementation because we have not implemented consistency semantics for all

file systems.

Design and Development of a Java Parallel I/O Library Page 51

Chapter 5

5 CONCLUSION AND FUTURE RECOMENDATION

Java has two I/O APIs, a legacy Java I/O API which was previously

benchmarked and Java NIO API which has not been evaluated in the HPC context

and is benchmarked in this paper. We observed that original Java I/O API provides

poor file I/O performance, its extensions provided significant performance gains,

and our proposed Java NIO approaches performed even better with increasing

number of threads (and processes). In order to compete as a mainstream HPC

language, Java based HPC libraries need to be equipped with efficient parallel I/O

support. This can only be achieved if a standard MPI-IO style parallel file I/O API

for Java be developed. Based on our performance evaluation, we can suggest that

the design and implementation of a Java parallel I/O API shall be based on the Java

NIO API as it natively provides the most efficient parallel file I/O methods. We are

now focused on evaluation of Java NIO on different storage systems, as well as

working on development of an MPI-IO style parallel file I/O API for Java.

Our work is an important step towards development of parallel I/O libraries

for Java HPC. Our API is the first Java based API for parallel File I/O and The

reference implementation of this API will also be the first ROMIO-like library for

Java language. We have developed the first version of prototype implementation

using MPJ Express we have implemented more than 1/3
rd

 part of complete

reference implementation containing the essential functions.

The most stable performance across all configurations and tests was achieved

by file channel with view buffers approach. Write performance increased

significantly while read performance increased slightly, with increase in processes,

for file channel in mapped mode on the distributed memory machine. Bulk random

access file approach performed comparable to the file channel with view buffer

approach.

Design and Development of a Java Parallel I/O Library Page 52

We are interested in Java IO and our results show persistent, stable results

with FileChannel with viewBuffer approach. We have used it for our prototype

implementation and recommend this approach for performing the efficient I/O.

As a future work we will provide detailed implementation for all file systems,

our current implementation is tested only on windows, Linux and NFS. Our current

implementation could work on other file systems but unexpected could occur.

We have implemented prototype of our reference Java API and its complete

implementation will be future work. The complete implementation will be tested

for Windows, Linux, NFS and all file systems. There are two approaches for

Implementation of complete Java parallel IO API.

 Using pure Java for all file systems

o File system specific calls available is C but unexplored in Java

 JNI wrappers for ROMIO implementation

We will prove implementation of Info class to apply info hints for different

file systems and others issues. These hints will be implemented in complete

implementation.

File interoperability is not yet implemented even in ROMIO. Its

implementation will be included in complete implementation of Java parallel I/O.

File interoperability is the ability to read the actual bit information of the file which

already has been written. Interoperability within a single MPI environment ensures

that the data written by one MPI process can be read by any other MPI process,

subject to the consistency constraints provided that it would have been possible to

start the two processes simultaneously and have them reside in a single

MPI_COMM_WORLD. Both of the processes must see the same data values at

every absolute byte offset in the File for which data was written.

Design and Development of a Java Parallel I/O Library Page 53

Our scope was MPJ Express which has not implemented required data types

with holes for views that’s why views are not implemented now and it will be in

near future.

The test results in Figure [4-6] are preliminary result. These may be different

from results of complete implementation because we have not implemented

consistency semantics for all file systems.

Design and Development of a Java Parallel I/O Library Page 54

Chapter 6

6 REFERENCES

[1] Chip makers turn to multicore processors. Geer. D. Computer - Volume 38,

Issue 5, May 2005 Page(s): 11 `–13.

http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.or

g%2Fiel5%2F2%2F30853%2F01430623.pdf&authDecision=-203

[2] Parallel Programming Models and Paradigms. Luis Moura e Silvay and

Rajkumar Buyyaz. 1999. http://www.gridbus.org/~raj/cluster/v2chap1.pdf

[3] Introduction to Programming Shared-Memory and Distributed-Memory Parallel

Computers. Cory Quammen. http://www.acm.org/crossroads/xrds8-

3/programming.html

[4] Java Grande Forum. http://www.javagrande.org/

[5] mpiJava 1.2: API Specification. Technical report; Northeast Parallel

Architectures Center, Syracuse University - October 1999. Bryan Carpenter,

Geoffrey Fox, Sung-Hoon Ko, and Sang Lim.

[6] MPJ: MPI-like Message Passing for Java. Concurrency: Practice and

Experience, 12(11), 2000. Bryan Carpenter, Vladimir Getov, Glenn Judd, Tony

Skjellum, & Geoffrey Fox.

[7] MPJ/Ibis: A Flexible and Efficient Message Passing Platform for Java. Markus

Bornemann, Rob van Nieuwpoort, and Thilo Kielmann. In Proceedings of the 12th

European PVM/MPI Users’ Group Meeting, Lecture Notes in Computer Science,

pages 217–224. Springer, 2005.

[8] MPJ Express Project – Java for High Performance Computing. http://mpj-

express.org/

[9] Rajeev Thakur et. al. ―An Evaluation of Java's I/O Capabilities for High-

Performance Computing‖ www.mcs.anl.gov/~thakur/papers/javaio.pdf

http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F2%2F30853%2F01430623.pdf&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F2%2F30853%2F01430623.pdf&authDecision=-203
http://www.gridbus.org/~raj/cluster/v2chap1.pdf
http://www.acm.org/crossroads/xrds8-3/programming.html
http://www.acm.org/crossroads/xrds8-3/programming.html
http://www.javagrande.org/
http://mpj-express.org/
http://mpj-express.org/
http://www.mcs.anl.gov/~thakur/papers/javaio.pdf

Design and Development of a Java Parallel I/O Library Page 55

[10] The Java Grande Forum, http://www.javagrande.org

[11] Carpenter, Bryan; Fox, Geoffrey; Ko, Sung-Hoon; and Lim, Sang, "mpiJava

1.2: API Specification" (1999). Northeast Parallel Architecture Center. Paper 66.

http://surface.syr.edu/npac/66

[12] MPJ Express Project, http://www.mpj-express.org/

[13] William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced

Features of the Message-Passing Interface. MIT Press, Cambridge, MA, 1999.

[14] ROMIO: A High-Performance, Portable MPI-IO Implementation,

http://www.mcs.anl.gov/research/projects/romio/

[15] Parallel HDF5 Project, http://www.hdfgroup.org/HDF5/PHDF5/

[16] Parallel I/O (PIO) Library, http://web.ncar.teragrid.org/~dennis/pio_doc/html/

[17] Parallel-NetCDF, http://trac.mcs.anl.gov/projects/parallel-netcdf

[18] Dan Bonachea, Phillip Dickens, and Rajeev Thakur, ―High-performance file

I/O in Java: Existing approaches and bulk I/O extensions,‖ Concurrency and

Computation: Practice and Experience, vol. 13, Aug. 2001, pp. 713–736.

[19] Omonbek Salaev, Parallel Datastore System for Parallel Java, A Capstone

Project Final Report, January 2010,

http://www.cs.rit.edu/~ark/students/obs8529/report.pdf

[20] Joshua Phillips, Munehiro Fukuda, Jumpei Miyauchi, "A Java Implementation

of MPI-I/O-Oriented Random Access File Class in AgentTeamwork Grid

Computing Middleware," Proc. IEEE Pacific Rim Conference on Communications,

Computers and Signal Processing (PacRim 07), Aug. 2007, pp.149-152.

[21] Jose M. Perez, L. M. Sanchez, Felix Garcia, Alejandro Calderon, Jesus

Carreter, "High performance Java input/output for heterogeneous distributed

computing," Proc. 10th IEEE Symp. on Computers and Communications (ISCC

2005), June 2005, pp. 969- 974.

[22] The Java Net-CDF library, http://www.unidata.ucar.edu/software/netcdf-java

[23] JavaSeis Project,

http://sourceforge.net/apps/mediawiki/javaseis/index.php?title=Main_Page

http://www.javagrande.org/
http://surface.syr.edu/npac/66
http://www.mpj-express.org/
http://www.mcs.anl.gov/research/projects/romio/
http://www.hdfgroup.org/HDF5/PHDF5/
http://web.ncar.teragrid.org/~dennis/pio_doc/html/
http://trac.mcs.anl.gov/projects/parallel-netcdf
http://www.cs.rit.edu/~ark/students/obs8529/report.pdf
http://www.unidata.ucar.edu/software/netcdf-java
http://sourceforge.net/apps/mediawiki/javaseis/index.php?title=Main_Page

Design and Development of a Java Parallel I/O Library Page 56

[24] Java™ Platform, Standard Edition 7 API Specification,

http://docs.oracle.com/javase/7/docs/api/

[25] Bulk I/O Extensions to Java,

http://www.eecs.berkeley.edu/~bonachea/java/index.html

[26] Titanium Project, http://titanium.cs.berkeley.edu/

[27] CPU-Z tool, http://www.cpuid.com/softwares/cpu-z.html

[28] Rajeev Thakur, Ewing Lusk, and William Gropp, "I/O in Parallel

Applications: The Weakest Link," The Int'l Journal of High Performance

Computing Applications, vol. 12(4), Winter 1998, pp. 389-395.

[29] Guillermo L. Taboada, Juan Touriño, Ramon Doallo, ―F-MPJ: scalable Java

message-passing communications on parallel systems,‖ Journal of

Supercomputing, vol. 60(1), 2012, pp. 117-140.

[30] Guillermo L. Taboada, Juan Touriño, Ramon Doallo, ―Java Fast Sockets:

Enabling high-speed Java communications on high performance clusters,‖

Computer Communications, vol. 31(17), 2008, pp. 4049-4059.

[31] Markus Bornemann, Rob V. van Nieuwpoort, and Thilo Kielmann, ―MPJ/Ibis:

a flexible and efficient message passing platform for Java,‖ Proc. of 12th European

PVM/MPI Users' Group Meeting, Sept. 2005, pp. 217-224.

[32] MPICH2 Project, http://www.mcs.anl.gov/research/projects/mpich2/

[33] Edgar Gabriel et al, ―Open MPI: Goals, Concept, and Design of a Next

Generation MPI Implementation,‖ Proc. Euro PVM/MPI 2004, Sept. 2004, pp. 97-

104.

[34] Bonachea, Dan. "Bulk File I/O Extensions to Java," Proc. of the ACM Java

Grande Conference, June 2000, pp. 16-25.

[35] Phillip Dickens and Rajeev Thakur, "An Evaluation of Java's I/O Capabilities

for High-Performance Computing," Proc. of the ACM Java Grande Conference,

June 2000, pp. 26-35.

[36] Alan Kaminsky, ―Parallel Java: A unified API for shared memory and cluster

parallel programming in 100% Java,‖ Proc. 21st IEEE International Parallel and

Distributed Processing Symposium (IPDPS 2007), March 2007, pp. 1-8.

http://docs.oracle.com/javase/7/docs/api/
http://www.eecs.berkeley.edu/~bonachea/java/index.html
http://titanium.cs.berkeley.edu/
http://www.cpuid.com/softwares/cpu-z.html
http://www.mcs.anl.gov/research/projects/mpich2/

Design and Development of a Java Parallel I/O Library Page 57

[37] Félix Garcia-Carballeira, Alejandro Calderon, Jesus Carretero, Javier

Fernandez, and Jose M. Perez, ―The Design of the Expand Parallel File System,‖

International Journal of High Performance Computing Applications, vol. 17(1),

Feb. 2003, pp. 21-37

[38] Ammar Ahmad Awan1, Muhammad Sohaib Ayub2, Aamir Shafi2,

Sungyoung Lee1 ―Towards Efficient Support for parallel IO in Java‖

[39]MPIA Message-Passing Interface StandardVersion 2.2Message Passing

Interface Forum, June 23, 2008 Chapter ―IO‖, Chapter no 13

[40]High Performance Computing lab manual for using HPC lab clusters and

MPJ.http://hpc.seecs.nust.edu.pk/docs/HPC_cluster_manual_v4.3.pdf

http://hpc.seecs.nust.edu.pk/docs/HPC_cluster_manual_v4.3.pdf

Design and Development of a Java Parallel I/O Library Page 58

Chapter 7

7 APPENDIX-A

7.1 Methods Implementation in Java based parallel I/OAPI

The Parallel I/O routines provided by MPI2.0 are listed in the following

table. There are total 52 methods .we will implement (19 out of 52) methods

highlighted in our prototype implementation of Java parallel I/O library (JPIO).

7.1.1 Data access routines

Table 7-1Data Access Routines

7.2 MPJ-IO: API Specification Version 0.1(MPI-2.2 Standard)

7.2.1 Introduction

There have been various additions to the original MPI-1.1 standard

document. The final form that is available today is MPI-2.2 standard document.

Design and Development of a Java Parallel I/O Library Page 59

The new MPI-3.0 is a work in progress and is still a draft version. We first need to

address the changes from version 1.1 to version 2.2, as they are very important to

extend the MPJ API and introduce parallel I/O functionality. The changes are listed

below

7.2.1.1 Changes from MPI-1.1 to MPI-2.2 (relevant to MPI-IO interface)

1. Sub array data-type (chapter 4)

2. Distributed array data-type (chapter 4 – important for MPI-IO)

3. True extents of a data-type

4. Duplicate a data-type

5. Decoding a data-type

6. MPI IO Rank (chapter 8)

7. The MPI Info object (chapter 9)

8. MPI_COMM_JOIN (chapter 10)

9. Finalize method for I/O – (chapter 12)

10. MPI – I/O (chapter 13)

Next, we provide the MPJ-IO specs based on MPI-IO specs defined in MPI-

2.2 standard document. The sub-sections are laid out directly as in the standard

document to allow cross-referencing. Since, the MPJ API specs define Java classes

for opaque objects in the MPI standard; we have to define new classes that will

reside in the mpj package.

MPJ Classes MPI Operations

mpj.File class MPI_File

mpj.Info class MPI_Info

mpj.Offset class MPI_Offset

7.2.1.2 Definitions

No special issues for the Java binding.

7.2.2 File Manipulation

All the collective operations are based on Communicator objects. There are

two type of communicators; Intracomm and Intercomm. The MPI-IO operations

are relevant to Intracomm class so we will translate the collective

MPI_FILE_OPEN and MPI_FILE_CLOSE operation to methods of the Intracomm

Design and Development of a Java Parallel I/O Library Page 60

class. We note that the mpj.File class used in the method signatures is not to be

confused with java.io.File class. In this document, whenever File is used, it means

the mpj.File class and not java.io.File class

7.2.2.1 Opening a File

The Java binding of the MPI operation MPI_FILE_OPEN.

File File.open(String filename, int amode, Info info)

filename name of the file

amode file access mode

info the info object

returns: the file object

7.2.2.2 Closing a File

The Java binding of the MPI operation MPI_FILE_CLOSE.

void File.close()

7.2.2.3 Deleting a File

The Java binding of the MPI operation MPI_FILE_DELETE.

void File.delete(string filename, Info info)

filename the name of the file

info the info object

7.2.2.4 Resizing a File

The Java binding of the MPI operation MPI_FILE_SET_SIZE. We are using

mpj.Offset object in the method signature for size parameter. The reason to use a

special object rather than integer is that file offsets can easily be of sizes greater

than 2
32

.

void File.setSize(Offset size)

size size to truncate or expand file

7.2.2.5 Preallocating Space for a File

The Java binding of the MPI operation MPI_FILE_PREALLOCATE.

void File.preallocate(Offset size)

Design and Development of a Java Parallel I/O Library Page 61

size size to pre allocate file

7.2.2.6 Querying the Size of File

The Java binding of the MPI operation MPI_FILE_GET_SIZE.

Offset File.getSize()

returns: the size of file in bytes

7.2.2.7 Querying File Parameters

The Java binding of the MPI operation MPI_FILE_GET_GROUP.

Group File.getGroup()

 returns: the group that opened the file (mpj.Group)

The Java binding of the MPI operation MPI_FILE_GET_AMODE.

int File.getAmode()

 returns: the file access mode of this file

7.2.2.8 File Info

The Java binding of the MPI operation MPI_FILE_SET_INFO.

void File.setInfo(Info info)

info the info object

The Java binding of the MPI operation MPI_FILE_GET_INFO.

Info File.getInfo()

 returns: returns the info object

7.2.3 File Views

The Java binding of the MPI operation MPI_FILE_SET_VIEW.

void File.setView(Offset disp, Datatype etype, Datatype filetype,

String datarep, Info info)

disp displacement

etype elementary datatype objet (mpj.Datatype)

Design and Development of a Java Parallel I/O Library Page 62

filetype filetype object (mpj.Datatype)

datarep data representation

info the info object

The Java binding of the MPI operation MPI_FILE_GET_VIEW. StringBuffer

is used so that the datarep is passed-by reference and the changes in the body of the

method reflect to the object itself.

void File.getView(Offset disp, Datatype etype, Datatype filetype,

StringBuffer datarep)

disp displacement

etype elementary datatype objet (mpj.Datatype)

filetype filetype object (mpj.Datatype)

datarep data representation

7.2.4 Data Access

7.2.4.1 Data Access Routines

 There are three aspects to data access routines, positioning, synchronizing

and coordination. Positioning is done by explicit offsets or implicit

offsets.Coordintion is no-collective and collective. The following combinations of

these data access routines include two types of pointers which are individual file

pointers and shared file pointers.

7.2.4.2 Data Access with Explicit Offsets

Java binding for the MPI operation MPI_FILE_READ_AT.

Status File.readAt(Offset offset, Object buf, int bufOffset, int count,

Datatype datatype)

offset the file offset

buf buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

returns: returns the status object

MPI_FILE_READ_AT_ALL is the collective version of the method above.

Status File.readAtAll(Offset offset, Object buf, int bufOffset,

Design and Development of a Java Parallel I/O Library Page 63

int count, Datatype datatype)

offset the file offset

buf buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

returns: returns the status object

Java binding for the MPI operation MPI_FILE_WRITE_AT.

Status File.writeAt(Offset offset, Object buf, int bufOffset,

int count, Datatype datatype)

offset the file offset

buf buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

returns: returns the status object

Java binding for the MPI operation MPI_FILE_WRITE_AT_ALL. It is the

collective version of the method above.

Status File.writeAtAll(Offset offset, Object buf, int bufOffset,

 int count, Datatype datatype)

offset the file offset

buf buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

returns: returns the status object

Java binding for the MPI operation MPI_FILE_IREAD_AT. This method is the

non-blocking version of MPI_FILE_READ_AT

Request File.ireadAt(Offset offset, Object buf, int bufOffset,

 int count, Datatype datatype)

offset the file offset

buf buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

Design and Development of a Java Parallel I/O Library Page 64

returns: returns the request object

Java binding for the MPI operation MPI_FILE_IWRITE_AT. This method is the

non-blocking version of MPI_FILE_WRITE_AT

Request File.iwriteAt(Offset offset, Object buf, int bufOffset,

int count, Datatype datatype)

offset the file offset

buf buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

returns: returns the request object

7.2.4.3 Data Access with Individual File Pointers

Java binding for the MPI operation MPI_FILE_READ.

Status File.read(Object buf, int bufOffset, int count,

Datatype datatype)

buf buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

returns: returns the status object

Java binding for the MPI operation MPI_FILE_READ_ALL. This is the collective

version of the above.

Status File.readAll(Object buf, int bufOffset, int count,

Datatype datatype)

buf buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

returns: returns the status object

Java binding for the MPI operation MPI_FILE_WRITE.

Status File.write(Object buf, int bufOffset, int count,

Design and Development of a Java Parallel I/O Library Page 65

Datatype datatype)

buf buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

returns: returns the status object

Java binding for the MPI operation MPI_FILE_WRITE_ALL. This is the collective

version of the above.

Status File.writeAll(Object buf, int bufOffset, int count,

Datatype datatype)

buf buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

returns: returns the status object

Java binding for the MPI operation MPI_FILE_IREAD.

Request File.iread(Object buf, int bufOffset, int count,

Datatype datatype)

buf buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

returns: returns the request object

Java binding for the MPI operation MPI_FILE_IWRITE.

Request File.iwrite(Object buf, int bufOffset, int count,

Datatype datatype)

buf buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

returns: returns the request object

Design and Development of a Java Parallel I/O Library Page 66

Java binding for the MPI operation MPI_FILE_SEEK.

void File.seek(Offset offset, int whence)

offset file offset

whence update mode

Java binding for the MPI operation MPI_FILE_GET_POSITION.

Offset File.getPosition()

returns: returns the file offset

Java binding for the MPI operation MPI_FILE_GET_BYTE_OFFSET.

Offset File.getByteOffset(Offset offset)

offset the view-relative offset

returns: returns the absolute byte file offset

7.2.4.4 Data Access with Shared File Pointers

Java binding for the MPI operation MPI_FILE_READ_SHARED.

Status File.readShared(Object buf, int bufOffset, int count,

Datatype datatype)

buf buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

returns: returns the status object

Java binding for the MPI operation MPI_FILE_WRITE_SHARED.

Status File.writeShared(Object buf, int bufOffset, int count,

Datatype datatype)

buf buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

returns: returns the status object

Design and Development of a Java Parallel I/O Library Page 67

Java binding for the MPI operation MPI_FILE_IREAD_SHARED.

Request File.ireadShared(Object buf, int bufOffset, int count,

Datatype datatype)

buf buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

returns: returns the request object

Java binding for the MPI operation MPI_FILE_IWRITE_SHARED.

Request File.iwriteShared(Object buf, int bufOffset, int count,

 Datatype datatype)

buf buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

returns: returns the request object

Java binding for the MPI operation MPI_FILE_READ_ORDERED.

Status File.readOrdered(Object buf, int bufOffset, int count,

Datatype datatype)

buf buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

returns: returns the status object

Java binding for the MPI operation MPI_FILE_WRITE_ORDERED.

Status File.writeOrdered(Object buf, int bufOffset, int count,

 Datatype datatype)

buf buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

returns: returns the status object

Design and Development of a Java Parallel I/O Library Page 68

Java binding for the MPI operation MPI_FILE_SEEK_SHARED.

void File.seekShared(Offset offset, int whence)

offset file offset

whence update mode

Java binding for the MPI operation MPI_FILE_GET_POSITION_SHARED.

Offset File.getPositionShared()

returns: returns the file offset

7.2.4.5 Split Collective Data Access Routines

Java binding for the MPI operation MPI_FILE_READ_AT_ALL_BEGIN.

void File.readAtAllBegin(Offset offset, Object buf, int bufOffset,

 int count, Datatype datatype)

offset the file offset

buf the buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

Java binding for the MPI operation MPI_FILE_READ_AT_ALL_END.

Status File.readAtAllEnd(Object buf, int bufOffset)

buf the buffer object

bufOffset the buffer offset

returns: returns the status object

Java binding for the MPI operation MPI_FILE_WRITE_AT_ALL_BEGIN.

void File.writeAtAllBegin(Offset offset, Object buf, int bufOffset,

 int count, Datatype datatype)

offset the file offset

buf the buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

Java binding for the MPI operation MPI_FILE_WRITE_AT_ALL_END.

Design and Development of a Java Parallel I/O Library Page 69

Status File.writeAtAllEnd(Object buf, int bufOffset)

buf the buffer object

bufOffset the buffer offset

returns: returns the status object

Java binding for the MPI operation MPI_FILE_READ_ALL_BEGIN.

void File.readAllBegin(Object buf, int bufOffset, int count,

Datatype datatype)

buf the buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

Java binding for the MPI operation MPI_FILE_READ_ALL_END.

Status File.readAllEnd(Object buf, int bufOffset)

buf the buffer object

bufOffset the buffer offset

returns: returns the status object

Java binding for the MPI operation MPI_FILE_WRITE_ALL_BEGIN.

void File.writeAllBegin(Object buf, int bufOffset, int count,

Datatype datatype)

buf the buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

Java binding for the MPI operation MPI_FILE_WRITE_ALL_END.

Status File.writeAllEnd(Object buf, int bufOffset)

buf the buffer object

bufOffset the buffer offset

returns: returns the status object

Design and Development of a Java Parallel I/O Library Page 70

Java binding for the MPI operation MPI_FILE_READ_ORDERED_BEGIN.

void File.readOrderedBegin(Object buf, int bufOffset, int count,

 Datatype datatype)

buf the buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

Java binding for the MPI operation MPI_FILE_READ_ORDERED_END.

Status File.readOrderedEnd(Object buf, int bufOffset)

buf the buffer object

bufOffset the buffer offset

returns: returns the status object

Java binding for the MPI operation MPI_FILE_WRITE_ORDERED_BEGIN.

void File.writeOrderedBegin(Object buf, int bufOffset, int count,

 Datatype datatype)

buf the buffer object

bufOffset the buffer offset

count number of elements in buffer

datatype datatype of each buffer element

Java binding for the MPI operation MPI_FILE_WRITE_ORDERED_END.

Status File.writeOrderedEnd(Object buf, int bufOffset)

buf the buffer object

bufOffset the buffer offset

returns: returns the status object

Design and Development of a Java Parallel I/O Library Page 71

7.2.5 File Interoperability

File interoperability is the ability to read the actual bit information of the file which

already has been written. Interoperability within a single MPI environment ensures

that the data written by one MPI process can be read by any other MPIprocess,

subject to the consistency constraints provided that it would have been possible to

start the two processes simultaneously and have them reside

in a single MPI_COMM_WORLD. Both of the processes must see the same data

values at every absolute byte offset in the File for which data was written.

7.2.5.1 Datatypes for File Interoperability

Java binding for the MPI operation MPI_FILE_GET_TYPE_EXTENT.

int File.getTypeExtent(Datatype datatype)

datatype the datatype object

returns: returns the status object

7.2.5.2 External Data Representation: “external32”

No special issues for the Java binding

7.2.5.3 User-Defined Data Representations

Java binding for the MPI operation MPI_REGISTER_DATAREP.

void registerDatarep(String datarep, Object extraState)

datarep the datarep string

extraState extra state

// callback discussion here. Signature incomplete

7.2.5.4 Matching Data Representations

No special issues for the Java binding.

7.2.6 Consistency and Semantics

7.2.6.1 File Consistency

Java binding for the MPI operation MPI_FILE_SET_ATOMICITY.

void File.setAtomicity(boolean flag)

flag the flag to set/unset the atomicity

Java binding for the MPI operation MPI_FILE_GET_ATOMICITY.

boolean File.getAtomicity()

Design and Development of a Java Parallel I/O Library Page 72

returns: true if atomic mode, false if nonatomic mode

Java binding for the MPI operation MPI_FILE_SYNC.

void File.sync()

7.2.6.2 Random Access vs. Sequential Files

No special issues for the Java binding.

7.2.6.3 Progress

No special issues for the Java binding.

7.2.6.4 Collective File Operations

No special issues for the Java binding.

7.2.6.5 Type Matching

No special issues for the Java binding.

7.2.6.6 Miscellaneous Clarifications

No special issues for the Java binding.

7.2.6.7 MPI_Offset Type

MPI_Offset type is used instead of int datatype to represent the size of the largest

file supported by MPI. The Java binding for this type is mpj.Offset.

7.2.6.8 Logical vs. Physical Layout

No special issues for the Java binding.

7.2.6.9 File Size

No special issues for the Java binding.

7.2.6.10 Examples

The examples in this section illustrate the application of the MPJ-IO consistency

and semantics guarantees. These examples address

 Conflicting accesses on file handles obtained from a single collective open,

and

 All accesses on file handles obtained from two separate collective opens.

Example -1: Sequential consistency by setting atomic mode

Design and Development of a Java Parallel I/O Library Page 73

 1

 2 import mpj.*;

 3 class Example {

 5 public static void main (String args[]) {

 6 MPJ.Init(args);

 7 int myRank = MPJ.COMM_WORLD.rank();

 8 if (myRank == 0) { /* Process 0 */

 9 int a[] = new int[10];

 10 for (int i = 0; i < 10; i++) {

 11 a[i] = 5;

 12 }

 13 File file = MPJ.COMM_WORLD.fileOpen("workfile",

 14 MPJ.MODE_RDWR | MPJ.MODE_CREATE, MPJ.INFO_NULL);

 15 file.setView(0, MPJ.INT, MPJ.INT, "native",

 16 MPJ.INFO_NULL);

 17 file.setAtomicity(true);

 18 Status status = file.writeAt(0, a, 0, 10, MPJ.INT);

 19 /* MPJ.COMM_WORLD.Barrier (); */

 20 } else { /* Process 1 */

 21 int b[] = new int[10];

 22 File file2 = MPJ.COMM_WORLD.fileOpen("workfile",

 23 MPJ.MODE_RDWR | MPJ.MODE_CREATE, MPJ.INFO_NULL);

 24 file2.setView (0, MPJ.INT, MPJ.INT, "native", MPJ.INFO_NULL);

 25 file2.setAtomicity (true);

 26 /* MPJ.COMM_WORLD.Barrier (); */

 27 Status status = file2.readAt (0, b, 0, 10, MPJ.INT);

 28 }

 29 MPJ.Finalize();

 30 }

 31 }

Example 2: Alternate method of consistency by setting non-atomic mode and using

barrier.

 1 import mpj.*;

 2

 3 class Example {

 4 public static void main (String args[]) {

 5

 6 MPJ.Init(args);

 7 int myRank = MPJ.COMM_WORLD.rank();

 8

 9 if (myRank == 0) { /* Process 0 */

 10

 11 int a[] = new int[10];

 12 for (int i = 0; i < 10; i++) {

 13 a[i] = 5;

 14 }

 15 File file = MPJ.COMM_WORLD.fileOpen("workfile",

 16 MPJ.MODE_RDWR | MPJ.MODE_CREATE, MPJ.INFO_NULL);

 17 file.setView(0, MPJ.INT, MPJ.INT, "native",

MPJ.INFO_NULL);

 18 Status status = file.writeAt(0, a, 10, MPJ.INT);

 19 file.sync();

 20 MPJ.COMM_WORLD.Barrier ();

 21 file.sync();

Design and Development of a Java Parallel I/O Library Page 74

 22

 23 } else { /* Process 1 */

 24

 25 int b[] = new int[10];

 26 File file2 = MPJ.COMM_WORLD.fileOpen("workfile",

 27 MPJ.MODE_RDWR | MPJ.MODE_CREATE, MPJ.INFO_NULL);

 28 file2.setView (0, MPJ.INT, MPJ.INT, "native",

MPJ.INFO_NULL);

29 file2.setAtomicity (true);

 30 file2.sync ();

 31 MPJ.COMM_WORLD.Barrier ();

 32 file2.sync ();

 33 Status status = file2.readAt (0, b, 10, MPJ.INT);

 34 }

 35 MPJ.Finalize();

 36 }

 37}

Example 3: erroneous attempt to achieve consistency by eliminating the apparently

superfluous second ―sync‖ call for each process in the example above.

 1 import mpj.*;

 2

 3 class Example {

 4 public static void main (String args[]) {

 5

 6 MPJ.Init(args);

 7 int myRank = MPJ.COMM_WORLD.rank();

 8

 9 if (myRank == 0) { /* Process 0 */

 10

 11 int a[] = new int[10];

 12 for (int i = 0; i < 10; i++) {

 13 a[i] = 5;

 14 }

 15 File file = MPJ.COMM_WORLD.fileOpen("workfile",

 16 MPJ.MODE_RDWR | MPJ.MODE_CREATE, MPJ.INFO_NULL);

 17 file.setView(0, MPJ.INT, MPJ.INT, "native",

MPJ.INFO_NULL);

 18 Status status = file.writeAt(0, a, 10, MPJ.INT);

 19 file.sync();

 20 MPJ.COMM_WORLD.Barrier ();

 21

 22 } else { /* Process 1 */

 23

 24 int b [] = new int[10];

 25 File file2 = MPJ.COMM_WORLD.fileOpen("workfile",

 26 MPJ.MODE_RDWR | MPJ.MODE_CREATE, MPJ.INFO_NULL);

 27 file2.setView (0, MPJ.INT, MPJ.INT, "native",

MPJ.INFO_NULL);

 28 MPJ.COMM_WORLD.Barrier ();

 29 file2.sync ();

 30 Status status = file2.readAt (0, b, 10, MPJ.INT);

 31 }

 32 MPJ.Finalize();

 33 }

 34}

Design and Development of a Java Parallel I/O Library Page 75

7.2.7 I/O Error Handling

No special issues for the Java binding.

7.2.8 I/O Error Classes

No special issues for the Java binding.

7.2.9 Examples

7.2.9.1 Double Buffering with Split Collective I/O

Java version of the example in Section 13.9.1 of the MPI-2.2 standard document is

below.

 /*

===

 *

 * Method: doubleBuffer

 *

 * Synopsis:

 * void doubleBuffer (MPJ.File file, MPJ.Datatype buftype, Int bufcount)

 *

 * Description:

 * Performs the steps to overlap computation with a collective writeby using

 a double-buffering technique.

 *

 * Parameters:

 * file previously opened MPJ file handle

 * buftype MPJ datatype for memory layout

 * (Assumes a compatible view has been set on file)

 * bufcount number of buftype elements to transfer

 *

===

======= */

1 void doubleBuffer (MPJ.File file, MPJ.Datatype buftype, int bufcount)

2 {

3 Status status; /* status for MPJ calls */

Design and Development of a Java Parallel I/O Library Page 76

5 float buffer1 [] = new float [bufcount];

6 float buffer2 [] = new float [bufcount];

7

8 float computeBuf []; /* destination buffer for computing */

9 float writeBuf []; /* source buffer for writing */

10

11 int done; /* determines when to quit */

12 computeBuf = buffer1; /* initially point to buffer1 */

13 writeBuf = buffer1; /* initially point to buffer1 */

14

15 /* DOUBLE-BUFFER prolog:

16 * compute buffer1; then initiate writing buffer1 to disk

17 */

18 done = computeBuffer(computeBuf, bufcount);

19 file.writeAllBegin(writeBuf, 0, bufcount, buftype);

20

21 /* DOUBLE-BUFFER steady state:

22 * Overlap writing old results from buffer writeBuf

23 * with computing new results into buffer computeBuf.

24 * There is always one write-buffer and one compute-buffer in use

25 * during steady state.

26 */

27 while (! done) {

28 toggleBuffer(computeBuf);

29 done = computeBuffer(computeBuf, bufcount);

30 status = file.writeAllEnd(writeBuf, 0);

31 toggleBuffer(writeBuf);

32 file.writeAllBegin(writeBuf, 0, bufcount, buftype);

33 }

34 /* DOUBLE-BUFFER epilog:

35 * wait for final write to complete.

36 */

37 status = file.writeAllEnd(writeBuf);

38 }

7.2.9.2 Subarray Filetype Constructor

No special issues for the Java bindings

